Disseminating Active Map

Information to Mobile Hosts

Mobile distributed computing enables users to interact with many
different mobile and stationary computers over the course of the
day. Navigating a mobile environment can be aided by active maps
that describe the location and characteristics of objects within
some region as they change over time.
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n recent years an extended form of com-

puting has emerged, called mobile dis-

tributed computing, in which users interact

with many different mobile and stationary

computers over the course of the day. Com-
putation nolonger occurs at asingle location in a sin-
gle environment, but rather spans a multitude of
situations covering the office, meeting room,
home, airport, hotel, plane, etc.

A significant aspect of this emerging mode of
computingis the frequently changing execution envi-
ronment to which users and long-running appli-
cations are exposed. As users move about, the
sets of mobile and stationary objects they interact
with may change, producing a highly dynamic
execution environment in which location is impor-
tant. Location information is necessary forusersand
applications that want to query and interact with
nearby devices and services. Such information
also allows stationary clients to track moving objects.
Ingeneral, location information enables software to
adapt according to its location of use, the collec-
tion of nearby people and objects, as well as the
changes to those objects over time. We use the
term context-aware computing to describe software
exhibiting these general capabilities. Articles
about this general topic include [4, 11-14].

This article focuses on the communication issues
we have encountered in disseminating location-based
information to interested clients. We introduce
the notion of an active map service (AMS) that
publisheslocation information for objects in aregion.
We shall use the term located-object to refer to
the entities managed by an active map service. Locat-
ed-objects are descriptions of anything that has
an associated physical location. Examples of
located-objects include persons, printers, terminals,
and workstations, as well as location-dependent
services, such as information agents associated
with particular parts of a store or building.

Akeyissue thatwe have faced in building an active
map service is that of scale. A variety of issues must
be dealtwithin order to avoid overloading the AMS,
its clients, and the communication facilities that
join them:

* Large meectings of mobile users may cause con-

siderable traffic because context-aware clients

at the meeting as well as remote applications may

need to be informed of the frequent occupant
changes. High message volume may also occur in
high traffic locations such as building lobbies.

* Low bandwidth links (usually wireless) limit the
amount of information that can be sent to some
clients.

* Mobile hosts have significantly stricter resource
budgets and hence cannot do as much work as
other hosts. For example, concern for power
conservation may limit the activity that battery-
powered hosts are willing to perform on an
ongoing basis.

Unfortunately, simply partitioning the AMS
into many servers, each managing a small area, is
only a limited help because clients frequently
desire to know about information covering an entire
region whose size is independent of what might
be most suitable for the AMS. This is illustrated
by the common ways we have observed clients
using location information:

* Many users may wish to track a particular locat-
ed-object as it moves around a region. Exam-
ples include tracking a co-worker you wish to
talk to and tracking the office coffee cart in
order to be made aware when either is nearby.

* More often users wish to track located-objects
with a specified set of attributes in a particular
region. An example is tracking all members of
a workgroup.

» Users may want to find the located-object near-
est to a specified location (usually their own)
that meets a specified set of constraints. Exam-
ples include finding the nearest printer and
finding the nearest system administrator.

* Finally, users frequently wish to monitor activi-
ty at a particular location. A typical example is
keeping track of available display devices at
one’s current location.

Of the four examples, the first three represent
regional queries that will require the AMS to
cover aregion whose size islikely to be that of a build-
ing or small campus, irrespective of how the
AMS’ implementation does so.

An architecture that addresses these issues is
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the primary focus of this article. The worst-case usage
scenario that our architecture will be designed to
handle is the “meeting scenario” in which several
hundred people, all using context-aware applica-
tions, converge on an auditorium over a period of
several minutes. To illustrate some of the issues
involved, consider how location information
about this scenario might be disseminated to the peo-
ple involved: the simplest— a naive unicast approach
—wouldresultinr updates going to each ofn clients,
which quickly gets out of hand. Waiting for quies-
cence and batching the updates would reduce the
message count to n, but would sacrifice timeli-
ness. Using broadcast or multicast [3] for the updates
would reduce the aggregate message traffic even
further, but would likely increase the traffic seen
by some clients, since not all clients are interested
in exactly the same information. This increase
may be problematic for clients residing on small hosts
(such as PDAs) or that are connected via low-
bandwidth links.

Each of the approaches exhibits different
trade-offs of server, network, and client loads. To
solve the problems of controlling and balancing com-
ponent loads we use a combination of three tech-
niques: detection of sets of clients that all wish to
receive the same information; dynamic assign-
ment of client sets to multicast groups; and update
suppression to guarantee clients that their com-
munication links will not be overloaded. The next
section describes context-aware computing, active
maps, and our system model in greater detail.
The section following that presents our design for
disseminating active map information, the next
section describes the performance of a testbed imple-
mentation we have done, then we describe relat-
ed work, and the final section summarizes our
work and presents our conclusions.

Context-Aware Computing and
Active Maps

Context-Aware Computing

Context-aware computing is the ability of a
mobile user’s applications to discover and react
to changes in the environment they are situated
in. In our system mobile users run software that is
constantly monitoring, or subscribing to, informa-
tion about the world around them. This monitor-
ing is done for a variety of reasons, including:

* To provide a display of “interesting” located-
objects.

* To keep a record of located-objects and per-
sons one has encountered, for use by applications
such as “activity-based information retrieval,”
which uses the context at the time the data was
stored to assist in retrieval [7].

» Todetectlocation-specificinformation, for exam-
ple electronic messages left for the user or for
public perusal.

* To keep a look out for nearby devices that can
be used opportunistically by applications, such
as additional display terminals in a room.

» To detect nearby people, located-objects, or ser-
vices that are relevant to reminders or actions
set to be triggered by their presence.

Further descriptions of avariety of location-based
applications canbe foundin [4, 12]. We describe one

particularly illustrative application here in more
detail: the locations program. This program displays
located-objects for a region as a textual list or as
a map marked with descriptive icons. “Interesting
located-objects” usually means persons who have
chosen to make their present location publicly avail-
able (within, say, the confines of their office
building or organization), although any set of objects
for which location information is available —
such as printers and copiers— can also be displayed.!
When a mobile object, such as a person, moves,
the associated information is updated on the
locations display.

One important aspect of the locations program
is that in crowded meeting rooms or large regions
filtering must be done in order to obtain a manageable
amount of information to display. Thus, the
information that clients are actually interested in
is a subset of all the location information that
might be available to them. Where and how fil-
tering is done will turn out to be an important
issue for controlling the behavior of our system.

Users of our system employ and interact with a
heterogeneous and changing set of hosts. In addi-
tion to using stationary hosts and I/O devices,
they may also carry wireless PDAs and notebook
computers. Consequently, context-aware applica-
tions must be able to run on both small mobile hosts
as well as the more traditional (and more powerful)
stationary ones. Furthermore, they mustbe prepared
to deal with a variety of different network media,
fromrelatively slow wireless links tovery high-speed
LAN links.

Mobile users also expect to be able to monitor
regions other than the one immediately surrounding
them and expect to be monitorable themselves by
remote parties. For example, a person visiting a
remote site might wish to have their presentlocation
be known to an agent process running back at
their home site so that interested parties can
determine where they are. Similarly, that person
might wish to monitor various activities occurring at
their home site, such as the presence or absence
of a colleague whom they wish to call by phone.

Active Maps

The AMS represents located-objects as tuples of
key-value attribute pairs. Any kind of information
thataclient wishes to make publicly available canbe
stored with a located-object registration; howev-
er, every located-object must include a location
attribute that describes its current physical location.

An active map consists of a hierarchy of loca-
tions with a containment relation; for example, rooms
are contained in buildings and buildings are con-
tained in a region. Figure 1 shows an example
hierarchy. An AMS region is the set of locations main-
tained by a single active map server. The detailed
structure (and depth) of any region’s location
containment hierarchy is region-specific.

The focus of our work so far hasbeen on providing
useful location information for AMS regions that
cover localized, administrative entities, such as build-
ings or small campuses. This is because we believe
the located-objects most useful for context-aware
computing are close at hand, either collocated or
requiring a short time to get to. Context-aware appli-
cations are more likely to monitor the contents of
the room and building they are situated in than
the contents of a building in the next town.

The

information
that clients
are actually
interested in
is a subset of
all the
location
information
that might
be available

to them.

! The privacy issues sur-
rounding who may gain
access to someone else’s
location information are
beyond the scope of this
article and are addressed
in [12]. Our work is based
on the observation that
many people are willing to
make at least a limited
version of location infor-
mation available to co-
workers within the
confines of their work-
place.
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W Figure 1. Example of active map containment hierarchy.

2 This assumption holds
in practice because the
AMS receives information
about changing objects
via RPC and processes
each RPC in turn.

3 See [12] for more infor-
mation on how user
agents fit into our system
design.

Because of the emphasis on proximate infor-
mation, we do not address the question of how to
manage information over larger regions, such as
cities or countries. Instead, we assume that clients
will accept the burden of interacting with any and
all AMS regions they are interested in. An impor-
tant consequence of this approach is that we must
be able to scale the implementation of an AMS
service to cover regions the size of buildings and
small campuses so that “regional” queries can be
implemented in an efficient fashion.

Clients of the active map service “publish”
information about objects at a particular location
and/or submit queries to obtain information
about other published located-objects. Queries
are matched against the attribute keys and values
of located-objects stored in the AMS. Standing
queries, called “subscriptions,” can also be specified;
the AMS will send information as it changes over
time to subscribing clients.

Receiving updates in response to subscriptions
is the common way clients interact with the AMS.
To characterize this form of interaction more
precisely, we define the AMS as a set of “publica-
tions”: P = {py, py, . .., p,u). This is the set of
located-objects for which the AMS maintains
information. Any client, i, can specify interest in a
dynamically changing subset of P’s publications
by submitting a subscription query, S;. The set of
all such subscription queries is denoted by S. All
members of § are run against P whenever the
state of any member of P changes. We assume
that at any given time, ¢, at most one member of P
will change its state.? If a member of P changes at
time ¢ then the set of subscription queries match-
ing the object is denoted the update query set,
u4(1). The associated set of clients who should receive
notification of the change is denoted the update client
set, u.(r).

Toillustrate how the AMS works we describe two
examples. In the first, mobile users continually mon-
itor their current locations for various reasons,
such as those outlined in the previous section. In our
system the personal information for each user is man-
aged by a user agent process.> Mobile users employ
the user agents to monitor the user’s whereabouts
byvarious means and publish that information in the
AMS. The user agent for a user U, who leaves
location /1 and enters location /2 might perform
the following AMS operations:

* Cancel publication of U’s presence at /1.
* Cancelsubscription that notifies of changes to any

objects located at /1.

* Publish U’s presence at /2.

¢ Subscribe to be notified of changes to any
objectslocated at/2. This subscription returns the
current set of objects at /2 as its return value.

If any other clients of the AMS were monitor-
ing either location /1 or location /2 then these
clients would be notified of user I’s movement.

For example, assume that user U1 is at location
11 and users U2 and U3 are at location /2 and that
all are running user agents that have placed sub-
scriptions with the AMS to monitor their present
locations. When U leaves location /1 the AMS
will notify the user agent of U1 that U has left.
Similarly, when U enters location /2 the AMS will
notify the user agents of U2 and U3 about U’s arrival.

The second example is the implementation of the
locations program, described earlier. This pro-
gram issues subscriptions to the AMS in order to
be notified of changes to relevant located-objects
anywhere in a specified region. The region might
be the entire AMS region or a smaller sub-region
ifthe AMS’ location hierarchy contains smaller inter-
nal regions (such as the floors of a building). To obtain
information about only people the program
would restrict its subscription query to match
located-objects that have, for example, the key-value
attribute pair (key = “type,” value =
“person”).

System Model

The context-aware applications, active map service,
and examples we have described require several
things from the underlying system infrastructure.
In particular, we assume that suitable location
sensing facilities are available to track the locations
of mobile objects and that suitable databases are
available that describe the locations of stationary
objects of interest. The system deployed in our
laboratory uses several different technologies to
detect the locations of mobile objects (mostly
people):

* Active badges [13], are attached to mobile
objects and monitored by sensors embedded in
the ceilings of rooms and corridors.

* Input activity at keyboards and mice is moni-
tored to detect the presence of logged-in users
in front of stationary workstations.

* Nano-cell-based diffuse infrared communications
[2, 10], is used to communicate with PDAs and
provide room-sized cell location information.

* Nano-cell-based, radio communications [6], is
used to communicate with portable notebook
computers and provide roughly room-sized cell
location information.

Location information for each person is syn-
thesized from these various sources by the user agent
for that person. A person’s user agent may then pub-
lish location information to the AMS, subject to
any privacy constraints the user has set.

In addition to the availability of location-sensing
facilities, we also assume that AMS clients can be
reached by packet-based communications, such
asIP. Thisrequires that applications on mobile hosts
are able to use a form of “mobile IP” communi-
cations protocol [5], or employ a “mobile host-agent
architecture”[10]. These approaches deliver
messages to mobile hosts in different ways. For
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mobile IP, message delivery is a network func-
tion, whereas the host-agent architecture uses awell
known user process as an intermediary to track,
forward, and possibly filter packets in an appro-
priate manner.

In addition to assuming that packets can be
routed to mobile hosts we also require efficient mul-
ticast communications. Although currently there is
no standard combined mobile-multicast commu-
nications protocol, one can imagine extending the
current mobile IP protocols to support multicast [1].
Throughout most of this article we will assume that
mobile-multicast is supported throughout the sys-
tem. In the section on unicast wireless links, we
discuss the implications of relaxing this assumption
to allow the use of unicast-only wireless links.

Disseminating Active Map
Information

Basic Unicast Design

The simplest implementation of an active map
service involves using reliable unicast communi-
cations, such as remote procedure call (RPC),
between the AMS and its clients. Most of the time
and for most clients RPC is a satisfactory commu-
nications paradigm to use. The reason is that, for
the most part, there are not that many objects
moving around and subscribers of the AMS are either
directly connected to high-speed networks or are not
sharing their slow-speed communication link with
many others. There are not many objects moving
around because people are the primary movable
“located-object” in the system and most of the
time they are stationary. Furthermore, most of the
time people are ensconced in separate offices or cubi-
cles and hence any wirelessly connected comput-
ersthey have are likely to occupy different nano-cells
inisolation. Of course, there are significant numbers
of workplaces for which these assumptions of
mostly stationary, mostly separated, people do not
hold. Similarly, not alt wireless technologies employ
room-sized cells for their communications.

Brief periods of increased load can be handled
by simply letting the unicast design queue AMS
update messages for later transmission and by
batching together multiple updates. Two benefits
are gained this way: 1) the packet overhead of an
update message can be amortized over more update
items, and 2) if the interval between updates
spans several sightings of the same moving object
then fewer update items can be sent by only
including the latest sighting for the object.

The disadvantages of this approach are that
subscribers obtain their information in a less
timely fashion and that they obtain less accurate
information about the activity around them. This
is a problem, for example, because a client may
find out too late or not at all that someone the
clientwanted to know about has passed nearby. Dis-
carding updates also requires some additional
message processing by the AMS. In any case, this
approach to controlling overload works only if
the overload lasts for a brief period of time.

A Reliable Multicast Design

Much of the AMS load generated during overload
situations is due to sending the same update mes-

sage, over and over again, to many different sub-
scribers. This duplication can be eliminated by
employing multicast to distribute the update message
to all interested subscribers at the same time.

We shall refer to the datastructure needed inside
the AMS to implement reliable communications
to a particular multicast group as a multicast
channel. The AMS multicast channels implement
a standard negative acknowledgment protocol.
To support this, each multicast message contains
a sequence number. Receivers check to make
sure they see each sequence number in turn. If a
missing message is discovered, then the receiver
sends a “heal” request specifying the missing
sequence number. The sender then retransmits
the requested message in a heal response. In order
tobound the time it takes receiversto detect amissed
message, whenever there isnonormal message traf-
fic for longer than the “synchronization interval,”
a“synchronization” message is sent. Under highload
situations waiting for synchronization messages
to detect misses rarely occurs since data messages
perform the same function.

Using a Single Multicast Channel — The
AMS sends out asynchronous notifications, or
callback messages, that contain information
about the changing context. Using asingle multicast
channel for all callback messages minimizes the
AMS load. The information aboutalocated-object’s
change-of-state can be sent once instead of once
for each client whose subscription query matches the
event. For network segments having muitiple clients
the load would also be minimized, since identical
messages occur only once.

However, this reduction in server and network
load comes in exchange for additional load placed
onall clients and on some communication links. This
isbecause all clients— and the communication links
joining them to the AMS — now receive all
updates the AMS sends out. For clients that are power
conscious and/or attached to slow communica-
tions links (e.g., a PDA attached to a 19200 bps
infrared link) this solution is unacceptable.

Multiple Multicast Channels — Instead of
indiscriminately sending update information to
all clients one can use multiple multicast channels
in order to send out information to selective
groups of clients. This requires that the AMS be able
to figure out how to assign some or all updates toone
or more multicast channels to be used for dissem-
ination.
The AMS must, of course, also tell subscrip-
tion clientswhich multicast channels to listen to first.
We define the general multicast-channel assign-
ment problem as follows. Recall the definition of
the AMS previously as a set of publications, P, a
set of subscriptions, S, and update client sets, i,.
Let G = (g1,&2, - - - » §n) be a collection of multi-
cast channels. We desire to define a mapping,
H(8):u(t) > G, ofu(t) onto G, such thatif the clients
specified by u.(?) listen to the multicast channels
specified by #,(¢) at time ¢ and the AMS sends
out the update information intended for u.(¢) to
the multicast channels specified by #,(¢) at time ¢
then the following will hold:
» Every subscription client ; will receive the update
information it has specified with its query, §;,
and

T
Multiple
multicast
channels can
be used to
send out
information
to selective
groups of

clients.
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Clients can
be encouraged
to use standard
queries

by having
applications
offer them as
easily selected
options in
their user

interfaces.

4 Clients may withdraw
subscriptions and sub-
scriptions are also garbage
collected when their sub-
mitting clients are detect-
ed to have gone away.

* The overall “system overhead” of disseminat-
ing update information will be minimized.
Unfortunately, when considered in its full gen-

erality, there are a variety of system overheads to
consider when choosing #,(¢). Furthermore,
these overheads are borne by different parts of
the system and are only partly comparable to
each other:

* The AMSbears the cost of computing/,,(¢), send-
ing updates about changes to P, and dissemi-
nating /,(¢).

* Clients bear the cost of tracking changes to
(1), as well as filtering unwanted updates.

* Duplicate update messages put additional load on
communication links.

* Notification time is affected by the use of extra
messages. If the AMS sends multiple messages
for the same update information then that will
introduce a delay for all but the first group of recip-
ients. This is a cost borne by the clients.

Given these different cost metrics it is difficult
to define what minimum system overhead means.
Worse yet, even if we restrict the problem by
choosing a particular cost metric, it will likely not
be easily solvable in general. For example, we
might choose to minimize server and communica-
tion costs by requiring that every update be sent using
exactly one message. That is, 4, (¢) would be restrict-
ed so that every update client set, u.(¢), is mapped
to exactly one member of G. In this case minimiz-
ing system overhead would mean choosing 4, (¢) such
that the message filtering overhead that client
subscribers experience due to receiving unwanted
update messages is minimized. Unfortunately,
this problem contains a solution space that is
exponential in the number of publications, sub-
scribers, and multicast channels involved.

Detecting Multiply-Subscribed Queries —
Because the general multicast-channel assign-
ment problem is too difficult, we must resort to a spe-
cial-case approach for solving a limited form of
the problem. Based on our experience with a col-
lection of location-aware applications, we first
note that the AMS load is determined largely by
regional or object-specific queries that are issued
bylarge numbers of clients as well as by queries mon-
itoring locations with frequently changing con-
tents, for example, meeting rooms and hallways.
In contrast to these “hot spots” of activity, moni-
toring a single located-object as it moves from
one place to another in a human time-frame pro-
duces only light message traffic. Our second
observation is that, in most cases, many clients
will specify the same or very similar subscription
queries for a particular meeting or for their
regional and object-specific subscription queries.
The AMS can exploit these situations by recog-
nizing when multiple clients are specifying the
same subscription query and employing a multi-
cast channel to service the update traffic for that
query. This approach imposes no additional fil-
tering overhead on clients and reduces server and
communicationsystemload to the extent that clients
can be encouraged to employ the same subscrip-
tion queries. In particular, if many clients specify the
same query for their subscription to a particular loca-
tion, then meetings can be handled efficiently because
the AMS can assign a single multicast channel to that
query and can use it to send a single update mes-

sage toall the clients who submitted that query. Sim-
ilarly, if many clients specify the same regional
subscription query then the AMS can service
those subscribers via a single multicast channel
that is dedicated to them.

A moredetailed description of how this approach
works is useful. First we observe that we require a
slightly different mapping than the one we have
already defined. Specifically, we define #(¥): u,(t)
— G,which mapsupdate query sets to multicast chan-
nels (instead of the associated update client sets).
This is so that we can “collapse” clients of multi-
ply-subscribed queries together. We define #(¢)
by defining an equality relationship for subscrip-
tion queries, such as string equality for the
(ASCII) source representation of queries, and
then defining #; such that at all times, ¢, equal
subscriptions map to the same member of G and
unequal subscriptions map to different members
of G. The size of G is assumed to be sufficiently large
to allow this.

The AMS computes u,(t) by maintaining a
count of the number of current subscriberswho have
submitted any given query and assigns multicast chan-
nelsto those with more than some pre-specified min-
imum number of subscribers, g. In particular, the
AMS maintains a record for each different query
corresponding to a currently submitted client
subscription.* This record contains a count field,
a multicast channel identifier, and a list of all
clients that have submitted this query. A unique uni-
cast callback address is also maintained for each
client. The count corresponds to the number of clients
who are currently interested in that particular
subscription query. If the count for a query is
equal to or above g then the multicast channel
identifier is used to send update information to
all the relevant clients. If the countisless than g then
update information is disseminated using the list
of client callback addresses attached to the
record. When the AMS receives a new subscrip-
tionrequest that contains the g-th instance of a query
it assigns a multicast channel to the query, records
the channel’s identifier, and notifies all clients
subscribing to the query to listen to the new mul-
ticast channel for update information. It does so using
the list of unicast callback addresses attached to
the query record.

Detecting multiply-subscribed queries will only
workwellif clients actually specify the same queries.
To encourage this we can define a “standard” set
of query templates that are parameterizable by loca-
tion as well as by a standard set of located-object
attribute types. When two clients substitute the same
parameters, e.g., because they are at the same
location, then identical queries will result. This
provides a fairly flexible set of queries that can
still be easily recognized and mapped to appro-
priate multicast update channels by the AMS.

Clients canbe further encouraged to use standard
queries by having applications offer them as easi-
ly selected options in their user interfaces. For exam-
ple, the locations program can offer appropriate
regional queries as menu options for determining
which located-objects to display information
about. Standard located-object types might
include printer and personand common filtering
criteria might include color vs. black-and-
whi tefor printers and various region-specific orga-
nization and work group names for people.
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Finally, we observe that clients sometimes wish
to subscribe to several standard queries simulta-
neously. Although we have not implemented it in
our system, one can imagine allowing disjunctive
combinations of standard queries so that clients
cansuccinctly specify subscription queries that match
one of several standard query alternatives with-
out having to manually issue several independent
subscriptions. This could be done if the AMS
internally “disassembles” such queries into their dis-
junctive parts; however, itwould require that clients
be prepared to receive duplicate update messages
since multiple query parts may match against the
same located-object update. The AMS could pro-
vide support for duplicate suppression by includ-
ing the same unique sequence number in all messages
that correspond to the same update.

Detecting Recurring Update Query Sets —
The previous section describes how updates toclients
subscribing to the same queries can be dissemi-
nated with a common multicast channel. This sec-
tion presents the idea that when different queries
result in updates to the same set of clients, they can
also share a multicast channel. For this to happen,
we must recognize recurring update query sets, u,(?);
i.e., sets of non-identical subscription queries that
repeat across a number of update events. This
will occur in situations where different groups of
clients want different, but possibly overlapping,
“cuts” of alarge amount of location information that
is available for a particular location or region. As
anexample, consider a large multi-organization con-
ference that is taking place. Many members of
each organization may want to see only the loca-
tion information pertaining to their own organi-
zation and, perhaps, a few “sister” organizations,
rather than information about all attendees of the
conference. This will be especially true for clients
sitting on small hosts connected via slow commu-
nications links. Regional queries can be similarly
specialized.

A side benefit of recognizing recurring query
sets is that it allows the AMS to use a simpler
form of query equality for recognizing multiply-sub-
scribed individual queries. Two queries whose source
form does not match, but which specify the same log-
ical query, will always appear together at the level
of query sets. For example a query (key =
“type, * value = “person”)andasecond query
having (key = “type,” value = “per-
son”)and (key = “department,” value
= “legal”) are not identical but match the
same located-objects when all people at the query
location are from the “legal” department.

To detect recurring update query sets, the
AMS must keep a history of the update query
sets that it has computed in the past. When a new
update event occurs (at time ¢), the AMS com-
putes its update query set, #4(¢), and then search-
es its history of update query sets to see if the
same queryset has occurred before. If it has occurred
several times before then it is a good candidate
for having a multicast channel assigned to it so
that updates to that set can be handled with a sin-
gleupdate message. More precisely, the AMS keeps
alist, H, of maximumsize m, of previously computed
query sets. Each list element contains the repre-
sentation for a previously computed query set, a
count of the number of times the AMS has encoun-

tered this particular query set, and a multicast
channel identifier. Just as with individual query
records, if the count for a query set is equal to or
above the pre-specified value, g, then the multi-
cast channel identifier will designate a multicast
channel that can be used to disseminate update
information. If the count is less than g then the
multicast channel identifier will be nil.

When no multicast channel has been assigned
to an update query set, update information must
be disseminated separately to the subscribers of each
query in the query set. This is done as follows: for
each query in the query set, send out update
information using either the multicast channel or
the list of unicast addresses that is associated with
that query. We shall refer to this means of update
as the multiple-messages-per-query algorithm in the
rest of this section.

The exact steps the AMS performs for an
update event occurring at time ¢ are given below:

1) Compute u(t).

2) Search for an exact match of u,(¢) in the his-
tory list H. An exact match occurs when each
query in u,(t) is equal to exactly one query in a
candidate query set, H;. Matching can be done
efficiently by using a hash scheme to reduce the
number of potentially equal query sets in H to one
or a few candidates. Equality matching of query
sets is done using representations that have been
sorted into a canonical order.

3) If no exact match is found then u,(t) is added
to the front of H witha countof 1andanil
multicast channel identifier. If this causes the size of
H to exceed m then the least recently used query
set is discarded from the list. We maintain a dou-
bly linked list of query sets in which an item is
moved to the front of the list on each use. This makes
the query sets sorted in the order of their last use,
and the item at the rear of the list is the one we
discard. Update information is sent to clients
using the multiple-messages-per-query algorithm.

4) If an exact match is found — suppose it is
element H;— then the following steps are performed:

a) Increment the count of H.

b) If H;’s multicast channel identifier is not
nilthenuse the indicated multicast channel tosend
out update information.

¢) If Hs multicast channel identifier isnil
and the count field isless than g then send out update
information using the multiple-messages-per-query
algorithm.

d) If H;’s multicast identifier isnil and the
count field is exactly g then perform the following
steps:

*Assign an unused multicast channel to the
query setand assign the channel’s identifier to the
multicast channel field of the query set’s record.

* For each query in the query set, send out the
update information as well as the identifier of
the newly assigned multicast group using the mul-
tiple-messages-per-query algorithm. Clients
are expected henceforthtolisten to the designated
multicast channel for all future update infor-
mation.’

Given the ability to detect both multiply-subscribed
queries and recurring update query sets, one
mightwonder how important each scheme is toload
reduction. We observe that in any system that is large
enough to have a diverse clientele, most of the
multicast traffic is likely to go over channels that
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Note that because we use
reliable multicast, clients
are guaranteed to find out
about changes in the set
of multicast channels they
should listen to, even if
they miss the relevant
multicast message. How-
ever, care must be taken
to ensure that when a
client detects a missed
multicast message that
contained such informa-
tion, the client asks for all
relevant messages that
might have been sent out
already via the new multi-
cast channel.

belong to the recurring query set scheme. However,
tracking multiply-subscribed queries allows the query
set scheme to avoid sending large numbers of
unicast update messages when a query set does
not end up using a multicast channel for update
dissemination. Indeed, if only one scheme could
be used, then as a result tracking multiply-subscribed
queries would be preferable to tracking recurring
update query sets.

A Bandwidth-Limited Approach

For clientssitting on low bandwidth communication
links or for hosts with limited computational resources
available for “ancillary” applications (such as the
locations program) the question of how to limit AMS
update trafficis extremely important. If a client waits
until a communication channel is flooded with
updates before taking any action, then it will be
difficult to send a message adjusting to a “small-
er” subscription. Unfortunately, itis not easy to infer
the amount of traffic that any given AMS subscription
query will generate since circumstances can
dynamically change.

The AMS can service such clients best by allow-
ing them to specify their desired bandwidth limits
as part of their subscriptions. The AMS guaran-
tees never to send more traffic to a client than
that client’sbandwidth limit specifies, even if it means
notsending all the update information that the client’s
subscription query has matched. In order to alert
clients when they are missing update information
because of bandwidth limitations, we must add an
additional count field (in order to update messages)
that indicates how many updates are still pend-
ing. Clientsreceiving anupdate message with anon-
zero count field know that they have received the
latest available location information for any
object that is included in the update message, but
they may be unaware of the latest changes to any
object not mentioned in the update message. It is
up to each client to decide how to deal with par-
tial update information.

The effect of bandwidth-limited subscription
onour multicast update schemes s as follows: instead
of using a single multicast channel for each multi-
ply-subscribed query or recurring update query
set we now use b+1 multicast channels, where b
isthe number of different bandwidth limits that have
been specified for the relevant individual query
or any of the queries in the relevant recurring
queryset. Each of the b+ 1 multicast channelsis used
tosenda different “band” of update traffic fora query
or query set. For example, if bandwidth limits b,
and b, have been specified for a query then we employ
three multicast channels, my, m,, and ms. The
first by bytes of update traffic in any given second
will be sent via m. If any traffic is still available
for sending during that second then b, — by bytes
of it are sent via m,. Any remaining data is sent
via m3. Clients desiring bandwidth limit by are
told to listen only to m. Clients desiring limit b,
are told to listen to both my and m,. Clients with
no bandwidth limit are told to listen to all three
multicast channels.

By using different multicast channels in the
fashion described, the AMS only has to send out
anupdate message once instead of b times. The price
paid for this approach is that clients must be told
more often of new multicast addresses to listen
to; inparticular, whenever a new client shows upwith

a different bandwidth limit than has already been
seen for their subscription query. Since informa-
tion about all but the first multicast channel to assign
to a query or query set can be disseminated using
analready assigned multicast channel, this overhead
is not really a problem.

Avdilability

Our design relies on a centralized active map

server, implying that the AMS will stop function-

ing whenever the server crashes. This is not a

problem in practice for two reasons:

* The active map server is host-independent and
hence can be run on any available server machine.
A distributed watch-dog facility can monitor
and restart the server if it fails.

* A well-known multicast channel can be used to
allow a newly restarting server to obtain cur-
rent location information for all located-objects
currently in its region. All clients of the AMS are
expected to be listening to this channel address
and will re-register their location and re-submit
their subscriptions with the AMS whenever
they receive a Server-Restart message.
The result of this approach is that the active map

server does not stay down for very long, assuming

that the system makes two or more machines
available as potential server hosts.

We have not addressed the issue of partition-
ing an AMS region. One can imagine AMS clients
starting up new instances of the server in their
partition when they notice its absence and having
servers watch for each other (e.g., using the well-
known multicast channel mentioned above) and per-
form re-integration whenever partitions heal.
However, this represents future work.

One might be tempted to avoid the availability
issues of a centralized service altogether by trying
to implement the AMS as a distributed communi-
cations protocol for exchanging information between
changing location-based objects and interested
clients. Located-objects could multicast their update
information and clients could multicast queries to
find out what they need to know about the cur-
rent state of some part of the system. Unfortu-
nately such an approachwill, in general, impose more
filtering load on the system’s located-object man-
agers and clientsbecause there is no centralized “traf-
fic router” that has extensive knowledge about
who is interested (and more importantly, not
interested) in what. Given the need to avoid over-
loading weak clients and slow communication
links, we consider the disadvantages of a totally
decentralized design to outweigh its advantages,
especially given the ability of our centralized server
to quickly recover from failure.

Local-Scope Versus Internet Multicast
Groups

The assumption that applications can use large num-
bers of multicast groups is currently not reason-
able in a general Internet setting: dynamic global
address assignment is difficult and significant
numbers of Internet-wide multicast groups would
overload the routing tables. Fortunately, most AMS
clients are likely to reside on hosts local to the
AMS’region. Therefore by limiting the range of mes-
sages sent over a multicast group — for example,
toacampus— the same group can be “recycled” and
used from one campus to the next.
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Currently we limit the range of IP multicast
datagrams by setting their time-to-live (TTL)
parameter: multicast datagrams are forwarded
from one subnet to another only if their TTL is above
a certain threshold. A small drawback with this
approach is that AMS regions must correspond to
the TTL regions defined by the multicast network
routers that willbe used (or that the network routers
have their TTL region definitions be appropriate-
ly tuned).

Because some clients may reside on remote hosts,
an AMS cannot rely solely on local-scope multi-
cast groups to disseminate heavily subscribed updates.
Inmany cases, simply unicasting the relevant updates
to the one or two remote clients interested in
themissufficient (in addition to disseminating them
via local-scope multicasts).

If each AMS obtains one or a few Internet
multicast group addresses for itself, then these
can be used to alleviate load in cases where a sig-
nificant number of remote clients exist and are inter-
ested in heavily subscribed updates. This works
wellto the extent that fewer Internet multicast groups
are needed than the AMS has obtained for itself.
As the demand for additional Internet multicast
groups increases, the AMS can control its own
load by reusing each Internet multicast group for
multiple multiply-subscribed queries or recurring
query sets and forcing remote clients to assume
additional filtering overhead. Note that the use of
Internet multicast groups can be kept completely
separate from the AMS’ handling of local clients
via local multicast groups (as long as clients’
“remoteness” can be readily determined). Hence
the problems of dealing with remote clients need
not affect the local system.

Dealing With Unicast Wireless Links

Many wireless communication technologies— such
ascurrentcellular telephone systems— do not offer
multicast support. An agent-based implementa-
tion for routing packets to mobile hosts also
makes the provision of multicast difficult since agents
communicate with their mobile hosts in an essen-
tially unicast-based fashion.

A hybrid scheme can help somewhat for sys-
tems that do not support multicast semantics
across their wireless communications links: the AMS
still employs multicast to reduce its own load;
however, communications are directed at agent
processes on LAN-connected hosts that convert the
multicast traffic to unicast and forward it to the
actual client applications running on mobile
hosts. Unfortunately this does not alleviate the
load problems that occur when the same update mes-
sage gets sent separately to many clients residing
in the same slow, wireless communications cell.

This problem can be partly alleviated by mov-
ing the relevant client applications partly or whol-
ly to stationary hosts that are directly connected
to a multicast-capable network. If a suitable local
host is available then this may not be difficult and
may even simplify matters: complicated filtering
needed to cull a small, manageable amount of
information from the update traffic generated
during overload situations can be done on a
faster stationary machine instead of on a slower,
resource- and power-conscious, portable machine.
The finalinformation results, which will presumably
be much smaller in size than the original update

traffic, can then be sent to application “front-ends”
that reside on users’ portable machines.

In some cases however, a suitable local host may
notbe available. While a mobile userisin his “home”
AMS region he will likely have access to a trusted
workstation or server machine on which tosafelyrun
his applications. If the user visits a remote region
he may not have access to a suitable local machine
there and would be forced to run his applications
remotely on a machine in his home region.
Depending on the applications and networks
involved, the additional delays this would impose
may or may not be an issue. In general, we conclude
that, while unicast wireless links can be partially
dealt with — especially when clients have access
to local trusted hosts — the availability of multi-
cast on wireless links is far preferable as a basis
for an AMS system.

An Implementation

n our laboratory we currently have two imple-

mentations of the AMS running: an older ver-
sion of the system has been in production use by about
40 people for several years and a new version
exists for use in a simulated testbed environment.
Thelatter wasbuilt in order to explore the ideas pre-
sented in this article and all the results presented
in this section were obtained from it.

The testbed system we built was designed to
tell us two different things: how well the active
map server we built works and what kinds of
loads might occur under various different user
movement scenarios. In particular, we were inter-
ested in characterizing the behavior of the system
under “normal” load circumstances as well as when
a meeting of many people took place.

Figure 2 shows some micro-benchmark num-
bers for our AMS testbed. These measurements were
made on aSun SparcStation-2 client, communicating
using Sun RPC over an Ethernet to a SparcStation-2
server machine running the active map server.
The line marked “query match” shows the time
required to match a simple query against a collec-
tion of AMS objects with a single object being
successfully matched and returned to the query client.
The slope shows that each additional object matched
contributed about 66 us to the service time. The
line marked “query return” shows the cost of return-
ing objects whose size is around 400 to 500 bytes
to the client.5 The slope of the line indicates about 2.5
ms are needed for each additional object returned.
The line marked “subscriber update” shows how
AMS service time for unicast subscriber updates
depends on the number of messages that must be
sent to disseminate information about an update
event.

To see how our system might behave under
different usage scenarios we built an artificial
workload generator, SimMob, for producing sets
of sightings that can then be played back to our active
map server. The workload generator is a discrete
event simulation of user movement consisting of
multiple “people” moving from vertex to vertex
on a graph representation for a building. The
building we simulated consists of multiple copies
of the floor plan for our laboratory. Each person
has a transition probability matrix (called a
“mode”) and a rate of transition. Activities, such
as a meeting, that occurs during the workload
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6 The reasons why locat-
ed-objects in our system
are so large are twofold:
descriptions consist of sev-
eral attributes and we use
the relatively inefficient
Sun XDR facilities to
encode object descrip-
tions. Although one could
significantly reduce the
size of object descriptions
it would not qualitatively
change the results we
obtain. Indeed, by using a
large object size we obtain
conservative bounds for
how well our system
should perform; using
smaller object sizes would
only improve things.

7If update query set sizes
were to start numbering in
the many tens to hundreds,
then the cost of sorting
them into canonical order
and storing them would
start to be significant.
However, our whole
design is predicated on the
assumption that many dif-
ferent queries will not
match any given update
event.

W Figure 2. Micro-benchmark numbers for an active map server running on a

simulation can change the mode and rate for one
oragroup of people. Our workload generator knows
about paths and distances: the main simulation loop
chooses a destination based on the users mode
and takes this destination and expands it to the
sequence of steps (i.e., sightings) along the short-
estpath. These steps are then emitted at times based
on the step’s distance and a global travel-rate.
Once a move is complete, the workload generator
chooses a Poisson-distributed random sleep time
(based on move-rate) for the person and leaves
that person stationary for that length of time
before repeating the entire process again.

Using SimMobwe are able to build artificial sight-
ings of hundreds of users in hundreds of loca-
tions. To test the AMS we designed two types of
workloads, “meeting” and “normal.” The meet-
ingworkload has people startin individual locations
and atsome point converge on asingle location over
a specified period of time, typically about 3 to 5
minutes. The normalworkload has users spend most
of the time in their offices and every once in a
while venture out to another location.

Tosee how large anormal work community might
be handled by the AMS we ran a normal work-
load against a unicast version of the AMS with
1,000 users in the system. As input to the work-
load generator we used an 80 percent probability
of staying in the office location which resulted in
12 percent of the community being mobile at any
given time, on average. This translated into
mobile users being sighted an average of every
8.9 seconds, resulting in a computed average of
600 moves per minute overall. The generated
workload was executed on 18 SparcStation hosts
each with between 55 to 56 client processes,
along with hosts for the server and a monitor pro-
gram. Running the workload produced updates
atthe expected rate, with encounters with other peo-
ple occurring on about 40 percent of the moves.
No regional queries were included in this work-
load; users monitored only their own locations.
For the unicast design we observed an average delay
of 23 ms in receiving updates — about twice the
unloaded case of 11 ms — implying that the AMS
should easilybe able to handle in excess of 1,000 users
under “normal work” conditions.

To confirm the fact that things like meet-
ings will quickly overload a unicast design, we
also ran several meeting workloads against our
unicast version of the AMS. Figure 3 shows our
results, indicating that meetings with more than
about 50 participants started to produce exces-
sive move-response times. In contrast, a single
multicast channel version of the AMS seems
able to support meetings of up to about 530
participants.

The overall performance of a version of the
AMS that incorporates the multiple multicast
schemes described in this article is determined
primarily by the average number of update messages
that the server ends up sending out per update event.
Thatis, the cost of managing the data structures need-
ed for these schemes is small compared to the
cost of actually sending update messages out on
the network.” When users employ standard
queries the way that client applications try to encour-
age them to, the average number of messages
that the AMS must send out for an update event
is kept quite low. Indeed, for most update events,
a single message suffices to update all regional
subscriptions. The same is true for subscriptions
to meeting locations. Unfortunately, only produc-
tion use of our system by real users who have had
a chance to write new applications will tell us how
many non-standard subscription queries will
occur in practice.

Figure 4 illustrates how the maximum size of
meetings handled by the AMS server depends on
the average number of messages that must be
sent out per update event. The values were
obtained by disabling the use of multicast chan-
nels for identical clients sets and generating arti-
ficial meeting workloads with a different numbers
of distinct subscription queries. In this graph, the
maximum meeting size is the point atwhich the AMS
is receiving updates quicker than they can be dis-
seminated. The graph shows the potential benefit of
merging client update sets into multicast channels
over the use of query matching alone.

Related Work

A smentioned at the beginning of this article, there
have been a number of papers on the topic of
location-based systems, including [4, 11-14]. [4] is
perhaps the broadest and most recent overview avail-
able on the topic. The distinguishing feature of
the work presented here is that it is the first that
addresses the issues of scaling and overload con-
ditions for systems covering “medium-sized” regions,
such as buildings and small campuses.

Our work can take advantage of several lower-
level communications technologies that have
been, or are being, developed by others. These
include IP-multicast[3], mobile IP[5], and mobile
IP multicast[1].

A number of other systems also use a publish/
subscribe style of information dissemination,
most notably [9] and [8]. However, all these sys-
tems employ only broadcast or at most a few mul-
ticast groups for their implementation, resulting
in extensive client-side filtering of messages. In con-
trast, our approach aggressively employs large num-
bers of multicast groups in order to keep client
filtering overhead and slow communication link loads
to a minimum.
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Summary and Conclusions

his article describes an active map service that

supports context-aware computing by providing
clients with information about located-objects
and how those objects change over time. We
focus on the communication issues of disseminating
information from an active map server to its
clients, and in particular, we address how to deal with
various overload situations that can occur. Simple
unicast callbacks to interested clients work well
enough if only a few located-objects are moving
at any given time and only a few clients wish to
know about any given move. However, if many
people are moving about in the same region and
many clients are interested in their motion, then
the AMS may experience overload due to the quadrat-
icnature of the communications involved. This over-
load affects both the server as well as any slow
communications links being used.

Generated workloads illustrate the extent of
the potential overload problem: while our system
seems capable of handling in excess of 1,000 users
under “normal” low-load circumstances (exem-
plified by people mostly sitting in their offices),
meetings of more than about 50 people manage
to overwhelm it if they are handled only by means
of unicast communications. In contrast, when the
AMS employs multiple multicast groups it is able
to support meetings of more than 500 participants.

Our approach to this problem has been to
exploit multicast techniques in order to avoid requir-
ing the AMS torepeatedly send out the same update
information message to different receivers. In order
to avoid losing update information, we use reli-
able multicast channels, which require clients tomon-
itor sequence numbers in each multicast message
and request retransmissions whenever they detect
a missed sequence number.

In order to avoid increased client filtering
overhead and added overhead on slow communi-
cations links, we use multiple multicast channels
so that AMS clients see only the subset of AMS
updates they are interested in. Assigning multi-
cast channels to suitable subsets of the update
traffic in order to minimize system load is, in gen-
eral, a very hard problem. The special-case solu-
tion we have pursued is to recognize subscription
queries that have been submitted by multiple clients
and sets of subscription queries that match multi-
ple update events. This approach is based on two
observations about AMS load: it is generated
mostly by regional queries that are submitted by large
numbers of clients and by update traffic related
to a relatively small number of “hot spot” loca-
tions or objects.

Toencourage the use of the same queries by many
clients, we have structured our applications to
offer standard queries as easily invoked menu
options. Structuring applications in this fashion
cansharply increase the likelihood that many clients
will employ the same query. The ability to tailor both
the AMS and its clients is perhaps the key factor that
enables our design to succeed. In essence we
ensure that our load reduction schemes will work
well by making sure that most client applications
generate exactly the kinds of queries the schemes
are designed to handle. If AMS applications were
designed without keeping this in mind, they
might well not exhibit the regular patterns that

B Figure 3. Average update time for clients monitoring a meeting as a function
of meeting size.

W Figure 4. Maximum size of meeting that can be handled as a function of the

average number of messages that must be sent out per meeting update event.

the AMS depends on for controlling system load.

While tailoring applications to behave properly
is key to our design, we feel that it is important to
offer as much flexibility to clients as possible
within the confines of our design. For example,
because the recognition scheme used by the AMS
dynamically recognizes multiply-subscribed queries,
applications can change the set of standard
queries they employ without having to change or
even notify the AMS itself. We also do not out-
law “non-standard” queries in our design.

Another important feature of our designis its abil-
ity to strictly limit the update traffic that clients
will be exposed toif they desire such alimit. By allow-
ing clients to explicitly specify bandwidth limits
for the AMS update traffic, we avoid being
“blocked out” on a slow communications link
from other more important application traffic
and from inadvertently consuming all of a power-
conscious host’s resources.

Although we pursued a centralized design for the
AMS, we do not feel this causes an availability
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problem since the active map server is host-inde-
pendentand hence canbe restarted on any available
server host. Restarting a server can be done fairly
quickly by using a well-known multicast group
address to solicit location and subscription infor-
mationfromallclients in the system. As aconsequence,
we have not felt the need to explore more com-
plicated and expensive fully-decentralized designs.
However, future work remains to be done on deal-
ing with partitions of an AMS region. We hope to
explore an extension of our centralized design
that relies on dynamically creating servers for
each partition and then “merging” serverswhen par-
titions heal.

Because most clients of the AMS are expected
tobelocal to the regionit covers, the AMS useslocal-
scope multicast groups to reach local clients,
thereby avoiding the difficulties of using large
numbers of Internet multicast groups that must
be globally allocated and managed; unicast is
used to reach remote clients. We do not yet have
experience with significant numbers of remote clients.
Ifremote clients remainrare, then use of asmall pre-
allocated set of Internet multicast group address-
esper AMS region may suffice for dealingwith them
more efficiently than unicast would. However, if
activities such as telecommuting make them com-
mon, then our design could become problematic
if AMS regions cannot obtain large numbers of
easily managed Internet multicast group address-
es for their private use.

Finally, we observe that our approach to dis-
seminating information relies on the availability
of multicast throughout a system, including its
wireless communication links. While multicast
can be added in a straightforward manner to the
experimental infrared and radio facilities that we
have built in our lab, it is not readily available as
part of the current commercial cell phone infras-
tructure and is not yet a part of any mobile IP
protocol proposal. While we have described an agent-
based approach that enables a system with only
unicast-based wireless communications to take par-
tial advantage of our multicast solutions, we
believe that a widespread deployment of active
map facilities — or facilities like them —will require
the widespread introduction of wireless and
mobile multicast facilities.
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